Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Xiao-Ming Jiang, Bian-Hong Meng and Zhi-Gang Zhang*

Institute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: zgzhang@sxu.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.066$
$w R$ factor $=0.162$
Data-to-parameter ratio $=12.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Triaqua $\{\mu-2-[N, N$-bis(carboxylatomethyl)amino-methyl]-6-[N-(carboxylatomethyl)- N -(carboxy-methyl)aminomethyl]-4-nitrophenolato\}dicopper(II) trihydrate

The structure of the title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{11}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, shows two distinct distorted octahedral $\mathrm{Cu}^{\mathrm{II}}$ centres, with each $\mathrm{Cu}^{\mathrm{II}}$ ion bound to carboxylate O atoms, amine N atoms, a phenolate O atom and water O atoms.

Comment

The synthesis and characterization of dinuclear $\mathrm{Cu}^{\text {II }}$ complexes have received a great deal of attention, owing to their importance in haemocyanin, tyrosinase, laccase and ascorbate oxidase (Kitajima \& Moro-oka, 1994; Solomon et al., 1994; Sorrell, 1989; Karlin, 1993). The R-HXTA ligands [where R is Cl or CH_{3} and HXTA is N, N^{\prime}-(2-hydroxy-5- $R-1,3-$ xylene)bis(N-carboxymethylglycine)] have been used extensively to incorporate various dinuclear cores, such as Cu, Fe, Ni and Ce (Holz et al., 1994; Murch et al., 1987; Meng, Huang \& Gao, 2004; Meng, Gao \& Zhu, 2004; Branum et al., 2001). In this paper, we report the title novel triaquadicopper complex of NO_{2}-HXTA, (I).

(I)

A displacement ellipsoid drawing of (I) is shown in Fig. 1. Each $\mathrm{Cu}^{\mathrm{II}}$ ion exhibits a distorted octahedral geometry, the two environments being different. The coordination sphere of Cu 1 is composed of atoms $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 6$ and N 2 forming a plane, with carboxylate distances $\mathrm{Cu} 1-\mathrm{O} 4=2.286$ (5) and $\mathrm{Cu}-\mathrm{O} 3^{v}$ $=3.018$ (5) \AA [symmetry code: (v) $1-x,-y,-z$]; the long $\mathrm{Cu}-\mathrm{O} 3^{\mathrm{v}}$ distance is to a ligand in a neighbouring complex. The coordination sphere of Cu 2 has atoms $\mathrm{O} 7, \mathrm{O} 9, \mathrm{O} 13$ and N 3 in a plane, with $\mathrm{Cu} 2-\mathrm{O} 1=2.301$ (4) and $\mathrm{Cu} 2-\mathrm{O} 14=$ 2.674 (5) A. Hydrogen bonds are formed between the uncoordinated water molecules and the carboxylate carbonyl O atoms, as well as the coordinated water molecules.

The structural aspects of (I) are similar to those of the analogous complex $\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3}\right.\right.$-HXTA $\left.) \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{Holz}$ et al., 1994; Meng, Huang \& Gao, 2004). However, the Cu $\mathrm{O}_{\text {phenolate }}$ distances in (I) $[1.922$ (4) and 2.301 (4) \AA] are longer than those found in $\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3}-\mathrm{HXTA}\right) \mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ [1.897 (3) and 2.246 (4) A (Holz et al., 1994), and 1.906 (2) and 2.229 (2) A (Meng, Huang \& Gao, 2004)].

Figure 1

The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (A) $1-x,-y,-z$.]

Interestingly, we also note that one H atom is attached to a carboxylate carbonyl O atom in (I), as was observed in $\left[\mathrm{Cu}_{2}-\right.$ $\left(\mathrm{CH}_{3}\right.$-HXTA) $\left.\mathrm{H}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Meng, Huang \& Gao, 2004).

Experimental

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China. The NO_{2}-HXTA ligand was synthesized by a modification of published procedures (Murch et al., 1987; Branum et al., 2001). To an aqueous solution $(100 \mathrm{ml})$ containing iminodiacetic acid $(0.125 \mathrm{~mol})$ and p-nitrophenol (0.063 mol) was added $\mathrm{NaOH}(0.25 \mathrm{~mol})$ in water $(40 \mathrm{ml})$, and the mixture was cooled in an ice-water bath. Upon dissolution, 37% formaldehyde (15 ml) was added dropwise at 273 K . The solution was stirred for 30 min , heated at 343 K for 4 h , and then concentrated to dryness. Recrystallization of the solid from methanol yielded the product $\mathrm{Na}_{4}\left(\mathrm{NO}_{2}\right.$-HXTA $) . \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5422 \mathrm{~g}, 0.002 \mathrm{~mol})$ and $\mathrm{Na}_{4}\left(\mathrm{NO}_{2}\right.$-HXTA) $(0.4293 \mathrm{~g}, 0.001 \mathrm{~mol})$ were dissolved in water $(10 \mathrm{ml})$. After stirring for 10 min , the solution was left in the refrigerator for 10 d . Dark-green crystals of (I) were obtained by slow evaporation of the aqueous solvent.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{11}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=660.49$
Monoclinic, $P 2_{1} / n$
$a=15.137$ (4) A
$b=10.787$ (3) \AA
$c=15.240(4) \AA$
$\beta=104.936$ (3) ${ }^{\circ}$
$V=2404.3(10) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1K CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\text {min }}=0.708, T_{\text {max }}=0.836$
9744 measured reflections
$D_{x}=1.825 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2284 reflections
$\theta=2.3-23.2^{\circ}$
$\mu=1.86 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, green
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

4233 independent reflections
3335 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-18 \rightarrow 13$
$k=-12 \rightarrow 12$
$l=-18 \rightarrow 17$

Refinement

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.922(4)$	$\mathrm{Cu} 2-\mathrm{O} 9$	$1.960(4)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.939(4)$	$\mathrm{Cu} 2-\mathrm{O} 7$	$1.960(4)$
$\mathrm{Cu} 1-\mathrm{O} 6$	$1.954(4)$	$\mathrm{Cu} 2-\mathrm{N} 3$	$2.004(5)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.040(4)$	$\mathrm{Cu} 2-\mathrm{O} 1$	$2.301(4)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$2.286(5)$	$\mathrm{Cu} 2-\mathrm{O} 14$	$2.674(5)$
$\mathrm{Cu} 2-\mathrm{O} 13$	$1.954(4)$		
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$166.71(19)$	$\mathrm{O} 13-\mathrm{Cu} 2-\mathrm{N} 3$	$172.90(19)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 6$	$91.49(17)$	$\mathrm{O} 9-\mathrm{Cu} 2-\mathrm{N} 3$	$83.36(19)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 6$	$89.11(17)$	$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{N} 3$	$84.70(19)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$96.1(18)$	$\mathrm{O} 13-\mathrm{Cu} 2-\mathrm{O} 1$	$94.44(16)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$	$83.87(17)$	$\mathrm{O} 9-\mathrm{Cu} 2-\mathrm{O} 1$	$92.35(17)$
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{N} 2$	$172.24(19)$	$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{O} 1$	$93.84(16)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$90.16(18)$	$\mathrm{N} 3-\mathrm{Cu} 2-\mathrm{O} 1$	$92.61(17)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 4$	$102.90(19)$	$\mathrm{O} 13-\mathrm{Cu} 2-\mathrm{O} 14$	$80.93(17)$
$\mathrm{O} 6-\mathrm{Cu} 1-\mathrm{O} 4$	$98.2(2)$	$\mathrm{O} 9-\mathrm{Cu} 2-\mathrm{O} 14$	$81.13(18)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 4$	$80.21(18)$	$\mathrm{O} 7-\mathrm{Cu} 2-\mathrm{O} 14$	$93.65(18)$
$\mathrm{O} 13-\mathrm{Cu} 2-\mathrm{O} 9$	$95.53(19)$	$\mathrm{N} 3-\mathrm{Cu} 2-\mathrm{O} 14$	$91.97(18)$
$\mathrm{O} 13-\mathrm{Cu} 2-\mathrm{O} 7$	$95.62(19)$	$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 14$	$171.55(16)$
$\mathrm{O} 9-\mathrm{Cu} 2-\mathrm{O} 7$	$166.78(17)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 17-\mathrm{H} 75 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.87	2.07	2.793 (8)	141
O16-H73 . O 15	0.85	2.00	2.851 (10)	173
O17-H76 . O 10	0.84	1.84	2.531 (9)	138
$\mathrm{O} 16-\mathrm{H} 74 \cdots \mathrm{O} 8^{\text {ii }}$	0.85	1.95	2.741 (7)	155
$\mathrm{O} 15-\mathrm{H} 72 \cdots \mathrm{O} 8^{\text {iii }}$	0.85	2.00	2.841 (7)	169
O14-H66 . O 16	0.85	2.43	3.154 (10)	144
O15-H71 . ${ }^{\text {O17 }}$	0.85	2.26	3.005 (12)	147
$\mathrm{O} 14-\mathrm{H} 65 \cdots \mathrm{O}^{\text {iv }}$	0.85	2.05	2.888 (7)	169
O13-H64 . . $\mathrm{O}^{\text {16 }}$	0.85	1.82	2.631 (7)	159
$\mathrm{O} 13-\mathrm{H} 63 \cdots \mathrm{O}^{\mathrm{v}}$	0.85	1.84	2.689 (6)	174
O6-H62 \cdots O $8^{\text {iii }}$	0.85	1.90	2.728 (6)	167
O6-H61 . ${ }^{\text {O }} 9$	0.85	1.86	2.708 (6)	172
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {vi }}$	0.86	1.69	2.541 (9)	170

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; (iv)
$\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $1-x,-y,-z$; (vi) $x, y-1, z$.
H atoms attached to C atoms were placed in geometrically idealized positions, with $\mathrm{Csp}^{3}-\mathrm{H}=0.97$ and $\mathrm{Csp}^{2}-\mathrm{H}=0.93 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(H)=1.2_{U_{\text {eq }}}(\mathrm{C})$. H atoms attached to O atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

The authors are grateful to the Natural Science Foundation of Shanxi Province for financial support (project No. 20041012).

Figure 2
A packing diagram for the structure of (I), viewed along the c axis. The dashed lines represent hydrogen bonds.

References

Branum, M. E., Tipton, A. K., Zhu S. \& Que, L. (2001). J. Am. Chem. Soc. 123, 1898-1904.
Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Holz, R. C., Brink, J. M., Gobena, F. T. \& O’Connor, C. J. (1994). Inorg. Chem. 33, 6086-6092.
Karlin, K. D. (1993). Science, 262, 1499.
Kitajima, N. \& Moro-oka, Y. (1994). Chem. Rev. 94, 737-757.
Meng, B., Huang, S. \& Gao, F. (2004). Acta Cryst. E60, m797-m799.
Meng, B.-H., Gao, F. \& Zhu, M.-L. (2004). Acta Cryst. C60, m308m310.
Murch, B. P., Bradley, F. C., Boyle, P. D., Papaefthymiou, V. \& Que, L. Jr (1987). J. Am. Chem. Soc. 109, 7993-8003.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
Solomon, E. I., Tuczek, F., Root, D. E. \& Brown, C. A. (1994). Chem. Rev. 94, 827-856.
Sorrell, T. N. (1989). Tetrahedron, 45, 3-68.

