Structure Reports Online

ISSN 1600-5368

Xiao-Ming Jiang, Bian-Hong Meng and Zhi-Gang Zhang*

Institute of Molecular Science, Chemical Biology and Molecular Engineering Laboratory of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China

Correspondence e-mail: zgzhang@sxu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.009 Å R factor = 0.066 wR factor = 0.162 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Acta Crystallographica Section E

Triaqua{ μ -2-[N,N-bis(carboxylatomethyl)aminomethyl]-6-[N-(carboxylatomethyl)-N-(carboxymethyl)aminomethyl]-4-nitrophenolato}dicopper(II) trihydrate

The structure of the title compound, [Cu₂(C₁₆H₁₅N₃O₁₁)-(H₂O)₃]·3H₂O, shows two distinct distorted octahedral Cu^{II} centres, with each Cu^{II} ion bound to carboxylate O atoms, amine N atoms, a phenolate O atom and water O atoms.

Received 27 July 2004 Accepted 6 August 2004 Online 13 August 2004

Comment

The synthesis and characterization of dinuclear Cu^{II} complexes have received a great deal of attention, owing to their importance in haemocyanin, tyrosinase, laccase and ascorbate oxidase (Kitajima & Moro-oka, 1994; Solomon et al., 1994; Sorrell, 1989; Karlin, 1993). The R-HXTA ligands [where R is Cl or CH₃ and HXTA is N,N'-(2-hydroxy-5-R-1,3xylene)bis(N-carboxymethylglycine)] have been used extensively to incorporate various dinuclear cores, such as Cu, Fe, Ni and Ce (Holz et al., 1994; Murch et al., 1987; Meng, Huang & Gao, 2004; Meng, Gao & Zhu, 2004; Branum et al., 2001). In this paper, we report the title novel triaquadicopper complex of NO₂-HXTA, (I).

A displacement ellipsoid drawing of (I) is shown in Fig. 1. Each Cu^{II} ion exhibits a distorted octahedral geometry, the two environments being different. The coordination sphere of Cu1 is composed of atoms O1, O2, O6 and N2 forming a plane, with carboxylate distances Cu1-O4 = 2.286 (5) and $Cu-O3^{v}$ = 3.018 (5) Å [symmetry code: (v) 1 - x, -y, -z]; the long $Cu-O3^{v}$ distance is to a ligand in a neighbouring complex. The coordination sphere of Cu2 has atoms O7, O9, O13 and N3 in a plane, with Cu2-O1 = 2.301 (4) and Cu2-O14 =2.674 (5) Å. Hydrogen bonds are formed between the uncoordinated water molecules and the carboxylate carbonyl O atoms, as well as the coordinated water molecules.

The structural aspects of (I) are similar to those of the analogous complex [Cu₂(CH₃-HXTA)H(H₂O)₂]·4H₂O (Holz et al., 1994; Meng, Huang & Gao, 2004). However, the Cu-O_{phenolate} distances in (I) [1.922 (4) and 2.301 (4) Å] are longer than those found in [Cu₂(CH₃-HXTA)H(H₂O)₂]·4H₂O [1.897 (3) and 2.246 (4) Å (Holz et al., 1994), and 1.906 (2) and 2.229 (2) Å (Meng, Huang & Gao, 2004)].

m1251 Acta Cryst. (2004). E60, m1251-m1253 DOI: 10.1107/S1600536804019439 Jiang et al. • $[Cu_2(C_{16}H_{15}N_3O_{11})(H_2O)_3] \cdot 3H_2O$

Figure 1

The structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (A) 1 - x, -y, -z.]

Interestingly, we also note that one H atom is attached to a carboxylate carbonyl O atom in (I), as was observed in $[Cu_2-(CH_3-HXTA)H(H_2O)_2]\cdot 4H_2O$ (Meng, Huang & Gao, 2004).

Experimental

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company of China. The NO₂-HXTA ligand was synthesized by a modification of published procedures (Murch *et al.*, 1987; Branum *et al.*, 2001). To an aqueous solution (100 ml) containing iminodiacetic acid (0.125 mol) and *p*-nitrophenol (0.063 mol) was added NaOH (0.25 mol) in water (40 ml), and the mixture was cooled in an ice–water bath. Upon dissolution, 37% formaldehyde (15 ml) was added dropwise at 273 K. The solution was stirred for 30 min, heated at 343 K for 4 h, and then concentrated to dryness. Recrystallization of the solid from methanol yielded the product Na₄(NO₂-HXTA). Cu(ClO₄)₂·6H₂O (0.5422 g, 0.002 mol) and Na₄(NO₂-HXTA) (0.4293 g, 0.001 mol) were dissolved in water (10 ml). After stirring for 10 min, the solution was left in the refrigerator for 10 d. Dark-green crystals of (I) were obtained by slow evaporation of the aqueous solvent.

Crystal data

$\begin{bmatrix} Cu_2(C_{16}H_{15}N_3O_{11})(H_2O)_3 \end{bmatrix} \cdot 3H_2O \\ M_r = 660.49 \\ Monoclinic, P2_1/n \\ a = 15.137 (4) Å \\ b = 10.787 (3) Å \\ c = 15.240 (4) Å \\ \beta = 104.936 (3)^{\circ} \\ V = 2404.3 (10) Å^3 \\ Z = 4 \end{bmatrix}$	$D_x = 1.825 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 2284 reflections $\theta = 2.3-23.2^{\circ}$ $\mu = 1.86 \text{ mm}^{-1}$ T = 298 (2) K Block, green $0.20 \times 0.20 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART 1K CCD area- detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2000) $T_{min} = 0.708, T_{max} = 0.836$	4233 independent reflections 3335 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 25.0^{\circ}$ $h = -18 \rightarrow 13$ $k = -12 \rightarrow 12$

 $l = -18 \rightarrow 17$

$T_{min} = 0.708$, $T_{max} = 0.8$. 9744 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wP(F^2) = 0.162$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0884P)^2]$ where $P = (F_o^2 + 2F^2)/3$
S = 1.00 4233 reflections	where $F = (F_o + 2F_c)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.74 \text{ e} \text{ Å}^{-3}$
343 parameters	$\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-O1	1.922 (4)	Cu2-O9	1.960 (4)
Cu1-O2	1.939 (4)	Cu2-O7	1.960 (4)
Cu1-O6	1.954 (4)	Cu2-N3	2.004 (5)
Cu1-N2	2.040 (4)	Cu2-O1	2.301 (4)
Cu1-O4	2.286 (5)	Cu2-O14	2.674 (5)
Cu2-O13	1.954 (4)		
O1-Cu1-O2	166.71 (19)	O13-Cu2-N3	172.90 (19)
O1-Cu1-O6	91.49 (17)	O9-Cu2-N3	83.36 (19)
O2-Cu1-O6	89.11 (17)	O7-Cu2-N3	84.70 (19)
O1-Cu1-N2	96.11 (18)	O13-Cu2-O1	94.44 (16)
O2-Cu1-N2	83.87 (17)	O9-Cu2-O1	92.35 (17)
O6-Cu1-N2	172.24 (19)	O7-Cu2-O1	93.84 (16)
O1-Cu1-O4	90.16 (18)	N3-Cu2-O1	92.61 (17)
O2-Cu1-O4	102.90 (19)	O13-Cu2-O14	80.93 (17)
O6-Cu1-O4	98.2 (2)	O9-Cu2-O14	81.13 (18)
N2-Cu1-O4	80.21 (18)	O7-Cu2-O14	93.65 (18)
O13-Cu2-O9	95.53 (19)	N3-Cu2-O14	91.97 (18)
O13-Cu2-O7	95.62 (19)	O1-Cu2-O14	171.55 (16)
O9-Cu2-O7	166.78 (17)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
O17−H75····O4 ⁱ	0.87	2.07	2.793 (8)	141
O16−H73···O15	0.85	2.00	2.851 (10)	173
O17−H76···O10	0.84	1.84	2.531 (9)	138
$O16-H74\cdots O8^{ii}$	0.85	1.95	2.741 (7)	155
$O15 - H72 \cdot \cdot \cdot O8^{iii}$	0.85	2.00	2.841 (7)	169
O14−H66···O16	0.85	2.43	3.154 (10)	144
O15-H71···O17	0.85	2.26	3.005 (12)	147
O14−H65···O3 ^{iv}	0.85	2.05	2.888 (7)	169
O13−H64···O16	0.85	1.82	2.631 (7)	159
$O13-H63\cdots O3^{v}$	0.85	1.84	2.689 (6)	174
O6−H62···O8 ⁱⁱⁱ	0.85	1.90	2.728 (6)	167
O6−H61…O9	0.85	1.86	2.708 (6)	172
$O5-H5\cdots O17^{vi}$	0.86	1.69	2.541 (9)	170

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (iii) $x - \frac{1}{2}$, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (iv) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$; (v) 1 - x, -y, -z; (vi) x, y - 1, z.

H atoms attached to C atoms were placed in geometrically idealized positions, with $Csp^3-H = 0.97$ and $Csp^2-H = 0.93$ Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2_{U_{eq}}(C)$. H atoms attached to O atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL/PC* (Sheldrick, 1999); software used to prepare material for publication: *SHELXTL/PC*.

The authors are grateful to the Natural Science Foundation of Shanxi Province for financial support (project No. 20041012).

Figure 2

A packing diagram for the structure of (I), viewed along the c axis. The dashed lines represent hydrogen bonds.

References

- Branum, M. E., Tipton, A. K., Zhu S. & Que, L. (2001). J. Am. Chem. Soc. 123, 1898–1904.
- Bruker (2000). *SMART* (Version 5.0) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Holz, R. C., Brink, J. M., Gobena, F. T. & O'Connor, C. J. (1994). *Inorg. Chem.* **33**, 6086–6092.
- Karlin, K. D. (1993). Science, 262, 1499.
- Kitajima, N. & Moro-oka, Y. (1994). Chem. Rev. 94, 737-757.
- Meng, B., Huang, S. & Gao, F. (2004). Acta Cryst. E60, m797-m799.
- Meng, B.-H., Gao, F. & Zhu, M.-L. (2004). Acta Cryst. C60, m308m310.
- Murch, B. P., Bradley, F. C., Boyle, P. D., Papaefthymiou, V. & Que, L. Jr (1987). J. Am. Chem. Soc. 109, 7993–8003.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1999). *SHELXTL/PC*. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Solomon, E. I., Tuczek, F., Root, D. E. & Brown, C. A. (1994). *Chem. Rev.* 94, 827–856.
- Sorrell, T. N. (1989). Tetrahedron, 45, 3-68.